
JavaScript 
Sahalsoftware 

 

Lesson 01: Introduction 

 

 JavaScript is the world's most popular programming language. 

 JavaScript is the programming language of the Web. 

 JavaScript is easy to learn. 

 This tutorial will teach you JavaScript from basic to advance. 

Why Study JavaScript? 

JavaScript is one of the 3 languages all web developers must learn: 

   1. HTML to define the content of web pages 

   2. CSS to specify the layout of web pages 

   3. JavaScript to program the behavior of web pages 

This tutorial covers every version of JavaScript: 

 The Original JavaScript ES1 ES2 ES3 (1997-1999) 
 The First Main Revision ES5 (2009) 

 The Second Revision ES6 (2015) 
 The Yearly Additions (2016, 2017, 2018) 

Commonly Asked Questions 

 How do I get JavaScript? 
 Where can I download JavaScript? 

 How much do full stack JavaScript developers make? 
 Are JavaScript coders in demand? 
 Who is father of JavaScript? Brendan Eich 

https://www.w3schools.com/html/default.asp
https://www.w3schools.com/css/default.asp


JavaScript 
Sahalsoftware 

 

Lesson 02: JavaScript Can Change HTML Content (Tags) 

Text Editor: 

 Download Visual Studio. 

 

One of many JavaScript HTML methods is getElementById() 

Example: 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>What Can JavaScript Do?</h2> 

 

<p id="demo">JavaScript can change HTML content.</p> 

 

<button type="button" onclick='document.getElementById("demo").innerHTML = "Hello 

JavaScript!"'>Click Me!</button> 

 

</body> 

</html> 

 

Note: 

JavaScript accepts both double and single quotes: 

 



JavaScript 
Sahalsoftware 

 

 

Lesson 03. JavaScript Can Change HTML Attribute Values 

 

In this example JavaScript changes the value of the src (source) attribute of 

an <img> tag: 

Example: 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>What Can JavaScript Do?</h2> 

<p>JavaScript can change HTML attribute values.</p> 

 

<p>In this case JavaScript changes the value of the src (source) attribute of an 

image.</p> 

<img id="myImage" src="off.png" style="width:100px" > 

<br> 

<button onclick="document.getElementById('myImage').src='on.png'">Turn on 

the light</button> 

<br> 

<button onclick="document.getElementById('myImage').src='off.png'">Turn 

off the light</button> 

</body> 

</html> 



JavaScript 
Sahalsoftware 

 

 

Lesson 04. JavaScript Can Change HTML Styles (CSS) 

Example: 

<!DOCTYPE html> 

<html> 

<body> 

<h2>What Can JavaScript Do?</h2> 

<p id="demo">JavaScript can change the style of an HTML element.</p> 

<button type="button" onclick="document.getElementById('demo').style.fontSize='35px'">Click 

Me!</button> 

 

</body> 

</html> 

Lesson 05: JavaScript Can Hide HTML Elements (Tags) 

<!DOCTYPE html> 

<html> 

<body> 

<h2>What Can JavaScript Do?</h2> 

<p id="demo">JavaScript can hide HTML elements.</p> 

<button type="button" onclick="document.getElementById('demo').style.display='none'">Click 

Me!</button> 

</body> 

</html> 

 



JavaScript 
Sahalsoftware 

 

JavaScript Can Show HTML Elements 

 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>What Can JavaScript Do?</h2> 

 

<p>JavaScript can show hidden HTML elements.</p> 

 

<p id="demo" style="display:none">Hello JavaScript!</p> 

 

<button type="button" onclick="document.getElementById('demo').style.display='block'">Click 

Me!</button> 

 

</body> 

</html> 

 

 

 

 

 

 

 



JavaScript 
Sahalsoftware 

 

Lesson 06: Where to (Head or Body) 

The <script> Tag 

In HTML, JavaScript code is inserted between <script> and </script> tags. 

<!DOCTYPE html> 

<html> 

<body> 

<h2>JavaScript in Body</h2> 

<p id="demo"></p> 

<script> 

document.getElementById("demo").innerHTML = "My First JavaScript"; 

</script> 

</body> 

</html> 

Note: 

Old JavaScript examples may use a type attribute: <script 
type="text/javascript">. 

 
The type attribute is not required. JavaScript is the default scripting language in 

HTML. 

 

 



JavaScript 
Sahalsoftware 

 

JavaScript in <head> or <body> 

You can place any number of scripts in an HTML document. 

Scripts can be placed in the <body>, or in the <head> section of an HTML page, or 

in both. 

JavaScript in <head> 

In this example, a JavaScript function is placed in the <head> section of an HTML 

page. 

The function is invoked (called) when a button is clicked: 

<!DOCTYPE html> 

<html> 

<head> 

<script> 

function myFunction() { 

  document.getElementById("demo").innerHTML = "Paragraph changed."; 

}</script></head> 

<body> 

<h2>Demo JavaScript in Head</h2> 

<p id="demo">A Paragraph.</p> 

<button type="button" onclick="myFunction()">Try it</button> 

</body> 

</html> 



JavaScript 
Sahalsoftware 

 

JavaScript in <body> 

In this example, a JavaScript function is placed in the <body> section of an HTML 

page. 

The function is invoked (called) when a button is clicked: 

<!DOCTYPE html> 

<html> 

<body> 

<h2>Demo JavaScript in Body</h2> 

<p id="demo">A Paragraph.</p> 

<button type="button" onclick="myFunction()">Try it</button> 

<script> 

function myFunction() { 

  document.getElementById("demo").innerHTML = "Paragraph changed."; 

} 

</script> 

</body> 

</html> 



JavaScript 
Sahalsoftware 

 

Lesson 07: Where to (External JavaScript) 

 

External JavaScript Advantages 

 

 

Placing scripts in external files has some advantages: 

 It separates HTML and code 
 It makes HTML and JavaScript easier to read and maintain 

 Cached JavaScript files can speed up page loads 

 

Scripts can also be placed in external files: 

External file: myScript.js 

 

External scripts are practical when the same code is used in many different web 
pages. 

JavaScript files have the file extension .js. 

To use an external script, put the name of the script file in the src (source) 

attribute of a <script> tag: 

Example 

<script src=”myScript.js”> </script> 

 



JavaScript 
Sahalsoftware 

 

<!DOCTYPE html> 

<html> 

    <head> 

 

    </head> 

<body> 

 

<h2>Demo External JavaScript</h2> 

 

<script> 

 

    document.write("I am a testing External JavaScript"); 

 

</script> 

 

</body> 

</html> 

Example2: 

 

<html> 

 

<body> 

 

    <h2>Demo External JavaScript</h2> 

 

    <script src="05.1.myScript.js"> </script> 

</body> 

</html> 

 

 

Note: 

Create External file .js 

Type this code and save .js 

Document.write(“I am a testing External JavaScript”); 



JavaScript 
Sahalsoftware 

 

 

Note: 

To add several script files to one page - use several script tags: 

Example 

<script src=”myScript1.js”> </script> 

<script src=”myScript2.js”> </script> 

 

 

External References 

An external script can be referenced in 3 different ways: 

 With a full URL (a full web address) 
 With a file path (like /js/) 

 Without any path 

 

This example uses a full URL to link to myScript.js: 

<script src="https://www.sahalsoftware.com/js/myScript.js"></script> 

 

This example uses a file path to link to myScript.js: 

<script src=”/js/myScript.js”> </script> 

This example uses no path to link to myScript.js: 



JavaScript 
Sahalsoftware 

 

Example 

<script src=”myScript.js”> </script> 

 

 

Lesson 08: JavaScript Display Possibilities 

JavaScript can "display" data in different ways: 

 Writing into an HTML element, using innerHTML. 
 Writing into the HTML output using document.write(). 
 Writing into an alert box, using window.alert(). 
 Writing into the browser console, using console.log(). 

Using innerHTML 

To access an HTML element, JavaScript can use 

the document.getElementById(id) method. 

The id attribute defines the HTML element. The innerHTML property defines the 

HTML content: 

<!DOCTYPE html> 

<html> 

<body> 

<h2>My First Web Page</h2> 

<p>My First Paragraph.</p> 

<p id="demo"></p> 

<script> 



JavaScript 
Sahalsoftware 

 

document.getElementById("demo").innerHTML = 5 + 6; 

</script> 

</body> 

</html> 

Note: 

Changing the innerHTML property of an HTML element is a common way to 
display data in HTML. 

 

Using document.write() 

For testing purposes, it is convenient to use document.write(): 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>My First Web Page</h2> 

<p>My first paragraph.</p> 

<p>Never call document.write after the document has finished loading. 

It will overwrite the whole document.</p> 

<script> 

document.write(5 + 6); 

</script> 

</body> 



JavaScript 
Sahalsoftware 

 

</html> 

 

 

 

Note: 

Using document.write() after an HTML document is loaded, will delete all 

existing HTML: 

Example: 

<!DOCTYPE html> 

<html> 

<body> 

<h2>My First Web Page</h2> 

<p>My first paragraph.</p> 

<button type="button" onclick="document.write(5 + 6)">Try it</button> 

</body> 

</html> 

 

Note: 

The document.write() method should only be used for testing. 

 



JavaScript 
Sahalsoftware 

 

 

 

Using window.alert() 

You can use an alert box to display data: 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>My First Web Page</h2> 

<p>My first paragraph.</p> 

<script> 

window.alert(5 + 6); 

</script> 

</body> 

</html> 

Note: 

You can skip the window keyword. 

In JavaScript, the window object is the global scope object, which means that 

variables, properties, and methods by default belong to the window object. This 
also means that specifying the window keyword is optional: 



JavaScript 
Sahalsoftware 

 

Using console.log() 

For debugging purposes, you can call the console.log() method in the browser 

to display data. 

<!DOCTYPE html> 

<html> 

<body> 

<h2>Activate Debugging</h2> 

<p>F12 on your keyboard will activate debugging.</p> 

<p>Then select "Console" in the debugger menu.</p> 

<p>Then click Run again.</p> 

<script> 

console.log(5 + 6); 

</script> 

</body> 

</html> 

 

JavaScript Print 

JavaScript does not have any print object or print methods. 

You cannot access output devices from JavaScript. 

The only exception is that you can call the window.print() method in the browser 

to print the content of the current window. 



JavaScript 
Sahalsoftware 

 

 

<!DOCTYPE html> 

<html> 

<body> 

<h2>The window.print() Method</h2> 

<p>Click the button to print the current page.</p> 

<button onclick="window.print()">Print this page</button> 

</body> 

</html> 

Lesson 09: JavaScript Statements 
 

JavaScript Programs 

A computer program is a list of "instructions" to be "executed" by a computer. 

In a programming language, these programming instructions are 
called statements. 

A JavaScript program is a list of programming statements. 

JavaScript Statements 

JavaScript statements are composed of: 

Values, Operators, Expressions, Keywords, and Comments. 

This statement tells the browser to write "Hello Sahalsoftware." inside an HTML 

element with id="demo": 



JavaScript 
Sahalsoftware 

 

<!DOCTYPE html> 

<html> 

<body> 

<h2>JavaScript Statements</h2> 

<p>In HTML, JavaScript statements are executed by the browser.</p> 

<p id="demo"></p> 

<script> 

document.getElementById("demo").innerHTML = "Hello Sahalsoftware."; 

</script> 

</body> 

</html> 

Note: 

Most JavaScript programs contain many JavaScript statements. 

The statements are executed, one by one, in the same order as they are 
written. 

JavaScript programs (and JavaScript statements) are often called JavaScript 
code. 

 

Semicolons ; 

Semicolons separate JavaScript statements. 

Add a semicolon at the end of each executable statement: 

<!DOCTYPE html> 

<html> 



JavaScript 
Sahalsoftware 

 

<body> 

<h2>JavaScript Statements</h2> 

<p>JavaScript statements are separated by semicolons.</p> 

<p id="demo1"></p> 

<script> 

let a, b, c; 

a = 5; 

b = 6; 

c = a + b; 

document.getElementById("demo1").innerHTML = c; 

</script> 

</body> 

</html> 

 

 

 

When separated by semicolons, multiple statements on one line are allowed: 

a = 5; b = 6; c = a + b; 

Same as: 
a = 5;        // Assign the value 5 to a 
b = 6;        // Assign the value 6 to b 
c = a + b;    // Assign the sum of a and b to c 

 



JavaScript 
Sahalsoftware 

 

Note: 

Sometimes, you might see examples without semicolons. 

Ending statements with semicolon is not required, but highly 
recommended. 
 

Lesson 10. JavaScript White Space 

JavaScript ignores multiple spaces. You can add white space to your script to 

make it more readable. 

The following lines are equivalent: 

Let person = “Ahmed” 

A good practice is to put spaces around operators ( = + - * / ): 

Let x = y + z; 

JavaScript Line Length and Line Breaks 

For best readability, programmers often like to avoid code lines longer than 80 

characters. 

If a JavaScript statement does not fit on one line, the best place to break it is 
after an operator: 

 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>JavaScript Statements</h2> 

<p> 



JavaScript 
Sahalsoftware 

 
The best place to break a code line is after an operator or a comma. 

</p> 

<p id="demo"></p> 

<script> 

document.getElementById("demo").innerHTML = 

"Hello Sahalsoftware!"; 

</script> 

</body> 

</html> 

 

Lesson 11. JavaScript Code Blocks 

JavaScript statements can be grouped together in code blocks, inside curly 

brackets {...}. 

The purpose of code blocks is to define statements to be executed together. 

One place you will find statements grouped together in blocks, is in JavaScript 

functions: 

<!DOCTYPE html> 

<html> 

<body> 

<h2>JavaScript Statements</h2> 

<p>JavaScript code blocks are written between { and }</p> 

<button type="button" onclick="myFunction()">Click Me!</button> 

<p id="demo1"></p> 

<p id="demo2"></p> 



JavaScript 
Sahalsoftware 

 
<script> 

function myFunction() { 

  document.getElementById("demo1").innerHTML = "Hello Mohamed!"; 

  document.getElementById("demo2").innerHTML = "How are you?"; 

} 

</script> 

</body> 

</html> 

 

Lesson 12: JavaScript Comments 
JavaScript comments can be used to explain JavaScript code, and to make it 
more readable. 

JavaScript comments can also be used to prevent execution, when testing 

alternative code. 

Single Line Comments 

Single line comments start with //. 

Any text between // and the end of the line will be ignored by JavaScript (will 

not be executed). 

This example uses a single-line comment before each code line: 

<!DOCTYPE html> 

<html> 

<body> 

<h1 id="myH"></h1> 



JavaScript 
Sahalsoftware 

 
<p id="myP"></p> 

<script> 

// Change heading: 

document.getElementById("myH").innerHTML = "JavaScript Comments"; 

// Change paragraph: 

document.getElementById("myP").innerHTML = "My first paragraph."; 

</script> 

</body> 

</html> 

This example uses a single line comment at the end of each line to explain the 
code: 

let x = 5;      // Declare x, give it the value of 5 
let y = x + 2;  // Declare y, give it the value of x + 2 

Multi-line Comments 

Multi-line comments start with /* and end with */. 

Any text between /* and */ will be ignored by JavaScript. 

This example uses a multi-line comment (a comment block) to explain the 
code: 

<!DOCTYPE html> 

<html> 

<body> 

<h1 id="myH"></h1> 

<p id="myP"></p> 

<script> 

/* 



JavaScript 
Sahalsoftware 

 
The code below will change 

the heading with id = "myH" 

and the paragraph with id = "myP" 

*/ 

document.getElementById("myH").innerHTML = "JavaScript Comments"; 

document.getElementById("myP").innerHTML = "My first paragraph."; 

</script> 

</body> 

</html> 

Using Comments to Prevent Execution 

Using comments to prevent execution of code is suitable for code testing. 

Adding // in front of a code line changes the code lines from an executable line 

to a comment. 

This example uses // to prevent execution of one of the code lines: 

 

//document.getElementById("myH").innerHTML = "My First Page"; 

document.getElementById("myP").innerHTML = "My first paragraph."; 

 

This example uses a comment block to prevent execution of multiple lines: 

 

/* 

document.getElementById("myH").innerHTML = "My First Page"; 

document.getElementById("myP").innerHTML = "My first paragraph."; 

*/ 

 



JavaScript 
Sahalsoftware 

 

Lesson 13: JavaScript Variables 

What are Variables? 

Variables are containers for storing data (storing data values). 

3 Ways to Declare a JavaScript Variable: 

 Using var 
 Using let 
 Using const 

In this example, x, y, and z, are variables, declared with the var keyword: 

var x = 5; 

var y = 6; 

var z = x + y; 

 

In this example, x, y, and z, are variables, declared with the let keyword: 

let x = 5; 
let y = 6; 
let z = x + y; 

 

In this example, x, y, and z, are variables, declared with the const keyword: 

const x = 5; 
const y = 6; 
const z = x + y; 

From all the examples above, you can guess: 

 x stores the value 5 

 y stores the value 6 
 z stores the value 11 

 



JavaScript 
Sahalsoftware 

 

When to Use JavaScript var? 

Always declare JavaScript variables with var, let, or const. 

The var keyword is used in all JavaScript code from 1995 to 2015. 

The let and const keywords were added to JavaScript in 2015. 

If you want your code to run in older browser, you must use var. 

 

 

When to Use JavaScript const? 

If you want a general rule: always declare variables with const. 

If you think the value of the variable can change, use let. 

 

Just Like Algebra 

Just like in algebra, variables hold values: 

Let x = 5; 

Let y = 6; 

Just like in algebra, variables are used in expressions: 

Let z = x + y; 

From the example above, you can guess that the total is calculated to be 11. 



JavaScript 
Sahalsoftware 

 

Note 

Variables are containers for storing values. 

 

LET 

The let keyword was introduced in ES6 (2015). 

Variables defined with let cannot be Redeclared. 

Variables defined with let must be Declared before use. 

Variables defined with let have Block Scope. 

 

Cannot be Redeclared 

Variables defined with let cannot be redeclared. 

You cannot accidentally redeclare a variable. 

Example: 

let x = "John Doe"; 
 
let x = 0; 
 
// SyntaxError: 'x' has already been declared 

 

With var you can: 

var x = "John Doe"; 
 
var x = 0; 

https://www.w3schools.com/js/js_es6.asp


JavaScript 
Sahalsoftware 

 

Block Scope 

Before ES6 (2015), JavaScript had only Global Scope and Function Scope. 

ES6 introduced two important new JavaScript keywords: let and const. 

These two keywords provide Block Scope in JavaScript. 

Variables declared inside a { } block cannot be accessed from outside the 
block: 

 

Example 

{ 

 Let x = 2; 

} 

// x can NOT be used here 

 

Variables declared with the var keyword can NOT have block scope. 

Variables declared inside a { } block can be accessed from outside the block. 

 

Example 

{ 

 var x = 2; 

} 

// x can be used here 



JavaScript 
Sahalsoftware 

 

 

Redeclaring Variables 

Redeclaring a variable using the var keyword can impose problems. 

Redeclaring a variable inside a block will also redeclare the variable outside the 

block: 

Example 

<!DOCTYPE html> 

<html> 

<body> 

<h2>Redeclaring a Variable Using var</h2> 

<p id="demo"></p> 

<script> 

var  x = 10; 

// Here x is 10 

{   

var x = 2; 

// Here x is 2 

} 

 

// Here x is 2 

document.getElementById("demo").innerHTML = x; 

</script> 



JavaScript 
Sahalsoftware 

 

</body> 

</html> 

Redeclaring a variable using the let keyword can solve this problem. 

Redeclaring a variable inside a block will not redeclare the variable outside the 

block: 

Example 

 

<!DOCTYPE html> 

<html> 

<body> 

<h2>Redeclaring a Variable Using let</h2> 

<p id="demo"></p> 

<script> 

let  x = 10; 

// Here x is 10 

{   

  let x = 2; 

  // Here x is 2 

} 

// Here x is 10 

document.getElementById("demo").innerHTML = x; 

</script> 



JavaScript 
Sahalsoftware 

 

 

</body> 

</html> 

Browser Support 

The let keyword is not fully supported in Internet Explorer 11 or earlier. 

 

Re-declaring - var 

Redeclaring a JavaScript variable with var is allowed anywhere in a program: 

Example: 

<!DOCTYPE html> 

<html> 

<body> 

<h2>JavaScript let</h2> 

<p>Redeclaring a JavaScript variable with <b>var</b> is allowed anywhere in 

a program:</p> 

<p id="demo"></p> 

<script> 

var x = 2; 

// Now x is 2 

 

var x = 3; 



JavaScript 
Sahalsoftware 

 

// Now x is 3 

document.getElementById("demo").innerHTML = x; 

</script> 

</body> 

</html> 

 

With let, redeclaring a variable in the same block is NOT allowed: 

var x = 2;   // Allowed 
let x = 3;   // Not allowed 
 
{ 
let x = 2;   // Allowed 
let x = 3;   // Not allowed 
} 
 
{ 
let x = 2;   // Allowed 
var x = 3;   // Not allowed 
} 

Redeclaring a variable with let, in another block, is allowed: 

Example 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>JavaScript let</h2> 

 

<p>Redeclaring a variable with <b>let</b>, in another scope, or in another 
block, is allowed:</p> 



JavaScript 
Sahalsoftware 

 

 

<p id="demo"></p> 

 

<script> 

let x = 2;   // Allowed 

 

{ 

  let x = 3;   // Allowed 

} 

 

{ 

  let x = 4;   // Allowed 

} 

document.getElementById("demo").innerHTML = x; 

</script> 

 

</body> 

</html> 

Let Hoisting 

Variables defined with var are hoisted to the top and can be initialized at any 

time. 

Meaning: You can use the variable before it is declared: 



JavaScript 
Sahalsoftware 

 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>JavaScript Hoisting</h2> 

 

<p>With <b>var</b>, you can use a variable before it is declared:</p> 

 

<p id="demo"></p> 

 

<script> 

carName = "Volvo"; 

document.getElementById("demo").innerHTML = carName; 

var carName; 

</script> 

 

</body> 

</html> 

 

Variables defined with let are also hoisted to the top of the block, but not 

initialized. 

Meaning: Using a let variable before it is declared will result in 

a ReferenceError: 



JavaScript 
Sahalsoftware 

 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>JavaScript Hoisting</h2> 

<p>With <b>let</b>, you cannot use a variable before it is declared.</p> 

<p id="demo"></p> 

 

<script> 

try { 

  carName = "Saab"; 

  let carName = "Volvo"; 

} 

catch(err) { 

  document.getElementById("demo").innerHTML = err; 

} 

</script> 

 

</body> 

</html> 

 



JavaScript 
Sahalsoftware 

 

Const 

 
The const keyword was introduced in ES6 (2015). 

Variables defined with const cannot be Redeclared. 

Variables defined with const cannot be Reassigned. 

Variables defined with const have Block Scope. 

 

Cannot be Reassigned 

A const variable cannot be reassigned: 

 

 
<!DOCTYPE html> 

<html> 

<body> 

 

<h2>JavaScript const</h2> 

 

https://www.w3schools.com/js/js_es6.asp


JavaScript 
Sahalsoftware 

 

<p id="demo"></p> 

 

<script> 

try { 

  const PI = 3.141592653589793; 

  PI = 3.14; 

} 

catch (err) { 

  document.getElementById("demo").innerHTML = err; 

} 

</script> 

 

</body> 

</html> 

Must be Assigned 

JavaScript const variables must be assigned a value when they are declared: 

Correct 

const PI = 3.14159265359 

const PI; 
PI = 3.14159265359; 



JavaScript 
Sahalsoftware 

 

When to use JavaScript const? 

As a general rule, always declare a variable with const unless you know that the 

value will change. 

Use const when you declare: 

 A new Array 
 A new Object 
 A new Function 

 A new RegExp 

 

Constant Objects and Arrays 

The keyword const is a little misleading. 

It does not define a constant value. It defines a constant reference to a value. 

Because of this you can NOT: 

 Reassign a constant value 
 Reassign a constant array 

 Reassign a constant object 

But you CAN: 

 Change the elements of constant array 
 Change the properties of constant object 

 

Constant Arrays 

You can change the elements of a constant array: 

Example: 



JavaScript 
Sahalsoftware 

 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>JavaScript const</h2> 

 

<p>Declaring a constant array does NOT make the elements 
unchangeable:</p> 

 

<p id="demo"></p> 

 

<script> 

// Create an Array: 

const cars = ["Saab", "Volvo", "BMW"]; 

 

// Change an element: 

cars[0] = "Toyota"; 

 

// Add an element: 

cars.push("Audi"); 

 

// Display the Array: 

document.getElementById("demo").innerHTML = cars;  



JavaScript 
Sahalsoftware 

 

</script> 

 

</body> 

</html> 

But you can NOT reassign the array: 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>JavaScript const</h2> 

 

<p>You can NOT reassign a constant array:</p> 

 

<p id="demo"></p> 

 

<script> 

try { 

  const cars = ["Saab", "Volvo", "BMW"]; 

  cars = ["Toyota", "Volvo", "Audi"]; 

} 

catch (err) { 

  document.getElementById("demo").innerHTML = err; 



JavaScript 
Sahalsoftware 

 

} 

</script> 

 

</body> 

</html> 

Constant Objects 

You can change the properties of a constant object: 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>JavaScript const</h2> 

 

<p>Declaring a constant object does NOT make the objects properties 

unchangeable:</p> 

 

<p id="demo"></p> 

 

<script> 

// Create an object: 

const car = {type:"Fiat", model:"500", color:"white"}; 

 



JavaScript 
Sahalsoftware 

 

// Change a property: 

car.color = "red"; 

 

// Add a property: 

car.owner = "Johnson"; 

 

// Display the property: 

document.getElementById("demo").innerHTML = "Car owner is " + car.owner;  

</script> 

 

</body> 

</html> 

But you can NOT reassign the object: 

<!DOCTYPE html> 

<html> 

<body> 

 

<h2>JavaScript const</h2> 

 

<p>You can NOT reassign a constant object:</p> 

 

<p id="demo"></p> 



JavaScript 
Sahalsoftware 

 

 

<script> 

try { 

  const car = {type:"Fiat", model:"500", color:"white"}; 

  car = {type:"Volvo", model:"EX60", color:"red"}; 

} 

catch (err) { 

  document.getElementById("demo").innerHTML = err; 

} 

</script> 

 

</body> 

</html> 

Browser Support 

The const keyword is not supported in Internet Explorer 10 or earlier. 

 

Block Scope - Const 

Declaring a variable with const is similar to let when it comes to Block Scope. 

The x declared in the block, in this example, is not the same as the x declared 

outside the block: 

<!DOCTYPE html> 



JavaScript 
Sahalsoftware 

 

<html> 

<body> 

 

<h2>JavaScropt const variables has block scope</h2> 

 

<p id="demo"></p> 

 

<script> 

const  x = 10; 

// Here x is 10 

 

{   

const x = 2; 

// Here x is 2 

} 

 

// Here x is 10 

document.getElementById("demo").innerHTML = "x is " + x; 

</script> 

 

</body> 

</html> 



JavaScript 
Sahalsoftware 

 

 

Redeclaring 

Redeclaring a JavaScript var variable is allowed anywhere in a program: 

Example 

var x = 2;     // Allowed 

var x = 3;     // Allowed 

x = 4;         // Allowed 

Redeclaring an existing var or let variable to const, in the same scope, is not 

allowed: 

var x = 2;     // Allowed 
const x = 2;   // Not allowed 
 
{ 
let x = 2;     // Allowed 
const x = 2;   // Not allowed 
} 
 
{ 
const x = 2;   // Allowed 
const x = 2;   // Not allowed 
} 

Reassigning an existing const variable, in the same scope, is not allowed: 

Example 

const x = 2;     // Allowed 

x = 2;           // Not allowed 

var x = 2;       // Not allowed 

let x = 2;       // Not allowed 

const x = 2;     // Not allowed 

 

{ 

  const x = 2;   // Allowed 

  x = 2;         // Not allowed 



JavaScript 
Sahalsoftware 

 
  var x = 2;     // Not allowed 

  let x = 2;     // Not allowed 

  const x = 2;   // Not allowed 

} 

 

Redeclaring a variable with const, in another scope, or in another block, is 

allowed: 

Example 

const x = 2;       // Allowed 

 

{ 

  const x = 3;   // Allowed 

} 

 

{ 

  const x = 4;   // Allowed 

} 

 

Const Hoisting 

Variables defined with var are hoisted to the top and can be initialized at any 

time. 

Meaning: You can use the variable before it is declared: 

 

Example 

This is OK: 

carName = "Volvo"; 

var carName; 



JavaScript 
Sahalsoftware 

 

 

Variables defined with const are also hoisted to the top, but not initialized. 

Meaning: Using a const variable before it is declared will result in 

a ReferenceError: 

alert (carName); 
const carName = "Volvo";    

 

Lesson 14. JavaScript Syntax 

 

JavaScript syntax is the set of rules, how JavaScript programs are 
constructed: 

// How to create variables: 

var x; 

let y; 

 

// How to use variables: 

x = 5; 

y = 6; 

let z = x + y; 

 

JavaScript Values 

The JavaScript syntax defines two types of values: 

 Fixed values 
 Variable values 

Fixed values are called Literals. 

Variable values are called Variables. 



JavaScript 
Sahalsoftware 

 

 

JavaScript Literals 

The two most important syntax rules for fixed values are: 

1. Numbers are written with or without decimals: 

10.50 

 

1001 

 

2. Strings are text, written within double or single quotes: 

"Mohamed Jama" 

 

'Mohamed Jama' 

 

 

JavaScript Variables 

In a programming language, variables are used to store data values. 

JavaScript uses the keywords var, let and const to declare variables. 

An equal sign is used to assign values to variables. 

In this example, x is defined as a variable. Then, x is assigned (given) the value 

6: 

let x; 

x = 6; 

 



JavaScript 
Sahalsoftware 

 

JavaScript Operators 

JavaScript uses arithmetic operators ( + - * / ) to compute values: 

(5 + 6) * 10 

JavaScript uses an assignment operator ( = ) to assign values to variables: 

let x, y; 

x = 5; 

y = 6; 

 

JavaScript Expressions 

An expression is a combination of values, variables, and operators, which 

computes to a value. 

The computation is called an evaluation. 

For example, 5 * 10 evaluates to 50: 

5 * 10 

Expressions can also contain variable values: 

x * 10 

 

The values can be of various types, such as numbers and strings. 

For example, "Mohamed" + " " + "Jama", evaluates to "Mohamed Jama": 

"Mohamed" + " " + "Jama" 

 



JavaScript 
Sahalsoftware 

 

JavaScript Keywords 

JavaScript keywords are used to identify actions to be performed. 

The let keyword tells the browser to create variables: 

let x, y; 

x = 5 + 6; 

y = x * 10; 

The var keyword also tells the browser to create variables: 

var x, y; 

x = 5 + 6; 

y = x * 10; 

In these examples, using var or let will produce the same result. 

 

JavaScript Comments 

Not all JavaScript statements are "executed". 

Code after double slashes // or between /* and */ is treated as a comment. 

Comments are ignored, and will not be executed: 

let x = 5;   // I will be executed 

 

// x = 6;   I will NOT be executed 

 

JavaScript Identifiers / Names 

Identifiers are JavaScript names. 



JavaScript 
Sahalsoftware 

 

Identifiers are used to name variables and keywords, and functions. 

The rules for legal names are the same in most programming languages. 

A JavaScript name must begin with: 

 A letter (A-Z or a-z) 

 A dollar sign ($) 
 Or an underscore (_) 

Subsequent characters may be letters, digits, underscores, or dollar signs. 

Note 

Numbers are not allowed as the first character in names. 

This way JavaScript can easily distinguish identifiers from numbers. 

 

JavaScript is Case Sensitive 

All JavaScript identifiers are case sensitive.  

The variables lastName and lastname, are two different variables: 

let lastname, lastName; 

lastName = "Mohamed"; 

lastname = "Jama"; 

JavaScript does not interpret LET or Let as the keyword let. 

 

JavaScript and Camel Case 

Historically, programmers have used different ways of joining multiple words 

into one variable name: 



JavaScript 
Sahalsoftware 

 

Hyphens: 

first-name, last-name, master-card, inter-city. 

Hyphens are not allowed in JavaScript. They are reserved for subtractions. 

Underscore: 

first_name, last_name, master_card, inter_city. 

Upper Camel Case (Pascal Case): 

FirstName, LastName, MasterCard, InterCity. 

Lower Camel Case: 

JavaScript programmers tend to use camel case that starts with a lowercase 
letter: 

firstName, lastName, masterCard, interCity. 

 

Lesson 15. JavaScript Operators 
Note: 

- Variables    = 30% 

- Operators + If + Loop  = 30% 

- Others     = 40 % 

 

Types of JavaScript Operators 

There are different types of JavaScript operators: 

 Arithmetic Operators 



JavaScript 
Sahalsoftware 

 

 Assignment Operators 
 Comparison Operators 

 Logical Operators 
 Conditional Operators 

 Type Operators 
 Bitwise Operators 

 

 

JavaScript Arithmetic Operators 

Arithmetic operators are used to perform arithmetic on numbers: 

Operator Description 

+ Addition 

- Subtraction 

* Multiplication 

** Exponentiation (ES2016) 

/ Division 

https://www.w3schools.com/js/js_2016.asp


JavaScript 
Sahalsoftware 

 

% Modulus (Division Remainder) 

++ Increment 

-- Decrement 

 

JavaScript Assignment Operators 

Assignment operators assign values to JavaScript variables. 

Operator Example Same As 

= x = y x = y 

+= x += y x = x + y 

-= x -= y x = x - y 

*= x *= y x = x * y 



JavaScript 
Sahalsoftware 

 

/= x /= y x = x / y 

%= x %= y x = x % y 

**= x **= y x = x ** y 

The addition assignment operator (+=) adds a value to a variable. 

Assignment 

let x = 10; 

x += 5; 

Example 1: 

<!DOCTYPE html> 

<html> 

<body> 

 

<h1>JavaScript Arithmetic</h1> 

<h2>The += Operator</h2> 

 

<p id="demo"></p> 

<script> 

var x = 10; 



JavaScript 
Sahalsoftware 

 

x += 5; 

document.getElementById("demo").innerHTML = x; 

</script> 

</body> 

</html> 

Adding JavaScript Strings 

The + operator can also be used to add (concatenate) strings. 

Example 

let text1 = "Mohamed"; 

let text2 = "Jama"; 

let text3 = text1 + " " + text2; 

The result of text3 will be: 

Mohamed Jama 

Example2: 

<!DOCTYPE html> 

<html> 

<body> 

 

<h1>JavaScript Arithmetic</h1> 

<h2>The += Operator</h2> 

 



JavaScript 
Sahalsoftware 

 

<p id="demo"></p> 

<script> 

var x = 10; 

x += 5; 

document.getElementById("demo").innerHTML = x; 

</script> 

</body> 

</html> 

 

The += assignment operator can also be used to add (concatenate) strings: 

Example 

let text1 = "What a very "; 

text1 += "nice day"; 

The result of text1 will be: 

What a very nice day 

When used on strings, the + operator is called the concatenation operator. 

 

Adding Strings and Numbers 

Adding two numbers, will return the sum, but adding a number and a string will 

return a string: 

 



JavaScript 
Sahalsoftware 

 

Example 

let x = 5 + 5; 

let y = "5" + 5; 

let z = "Hello" + 5; 

The result of x, y, and z will be: 

10 

55 

Hello5 

Example 3: 

<!DOCTYPE html> 

<html> 

<body> 

 

<h1>JavaScript Operators</h1> 

 

<p>Adding a number and a string, returns a string.</p> 

 

<p id="demo"></p> 

 

<script> 

let x = 5 + 5; 

let y = "5" + 5; 

let z = "Hello" + 5; 

document.getElementById("demo").innerHTML = 



JavaScript 
Sahalsoftware 

 

x + "<br>" + y + "<br>" + z; 

</script> 

 

</body> 

</html> 

 

If you add a number and a string, the result will be a string! 

 

Lesson 16. JavaScript Comparison Operators 

Operator Description 

== equal to 

=== equal value and equal type 

!= not equal 

!== not equal value or not equal type 

> greater than 



JavaScript 
Sahalsoftware 

 

< less than 

>= greater than or equal to 

<= less than or equal to 

? ternary operator 

 

JavaScript Logical Operators 

Operator Description 

&& logical and 

|| logical or 

! logical not 

 



JavaScript 
Sahalsoftware 

 

JavaScript Type Operators 

Operator Description 

typeof Returns the type of a variable 

instanceof Returns true if an object is an instance of an object type 

 

JavaScript Bitwise Operators 

Bit operators work on 32 bits numbers. 

Any numeric operand in the operation is converted into a 32 bit number. The 

result is converted back to a JavaScript number. 

Operator Description Example Same as Result Decimal 

& AND 5 & 1 0101 & 0001 0001  1 

| OR 5 | 1 0101 | 0001 0101  5 

~ NOT ~ 5  ~0101 1010  10 



JavaScript 
Sahalsoftware 

 

^ XOR 5 ^ 1 0101 ^ 0001 0100  4 

<< left shift 5 << 1 0101 << 1 1010  10 

>> right shift 5 >> 1 0101 >> 1 0010   2 

>>> unsigned right shift 5 >>> 1 0101 >>> 1 0010   2 

 

 

 


